

Agenda: Streets & Drainage Advisory Task Force

- August Rainfall Event
 - How much water fell on Lakeside?
 - Property Owner Drainage Submissions
 - What Caused the Damage?
 - Unique Lakeside Drainage Challenges
- Design Discussions
- Next Steps

Questions welcomed at any time during the presentation

August Rainfall Event

- An unprecedented rainfall event hit the Lakeside area August 23 and August 24.
 - Reported rainfall totals ranged from 5" (Lakeside homeowner rain gauge) to 8.6" (East Harbor State Park).
 - This was a one in 500-year to one in 1,000-year event per National Oceanic and Atmospheric Administration data.
 - Many Lakeside properties suffered damage.

Runoff Quantities

Rough estimate of total accumulation from 8" of rainfall is 33 million gallons

- Runoff from natural surfaces: 46%
 15.2 million gallons (of which 8.5 million gallons became runoff)
- Runoff from homes/buildings: 36%
 12.0 million gallons (all of which became runoff)
- Runoff from road surfaces: 18%
 5.9 million gallons (all of which became runoff)

Runoff Quantities

■ The Lakeside built environment, buildings and roads, produces 68% of the runoff volume from any storm event or approximately **26.4 million gallons** for this storm.

The pool holds 141,125 gallons. This volume of water is 233

times larger.

Property Owner Drainage Submissions

 More than 70 drainage problems were submitted to Lakeside by community members.

What Caused the Damage?

- Damage occurred by one of the following:
 - Sanitary sewer backup.
 - Subsurface water intrusion.
 - Surface water.

Sanitary Sewer Damage

- Sanitary sewers backed up and flowed into basements.
- Ottawa County owns and operates the sanitary sewer system.
 - The west "half" was constructed in 1992 and the east "half" in 1997.
- Ottawa County is aware of system wide and Lakeside problems. Working aggressively to:
 - Reduce inflow water entering through manholes, sump pumps, and illegal connections.
 - Reduce infiltration water entering through pipe joints and cracks and manholes.

Sanitary Sewer Damage (Continued)

- This storm produced so much I&I that the sanitary sewer blew at least one manhole lid off the casting near the East Second Street gate.
- The pump stations in the Ottawa County system also reached maximum capacity and overflowed into the lake.
- The County's general recommendation is to avoid having connections to the sewer system in basements.
- The Sanitary Engineer's office will provide free backflow preventers to prevent backflow.
 - However, the property owner would pay for the installation.

Subsurface Water Damage

- Water flowing in soil and fractured rock entered basements through floors and walls.
 - Lakeside is underlain with fractured rock at varying depths.
 - Surface water seeps into the fractures and then moves through the rock to the lake.
 - This same water can enter basements through floors and walls if there is adequate pressure or through sump pits that are open to the fractured rock.
 - Sumps open to rock or pumps with inadequate capacity permit water to enter basements.

Surface Water Damage

- Surface water intrusion was due to rainfall runoff from roads, buildings and grounds and over capacity storm sewers.
 - Lakeside has some storm sewers including portions of the abandoned sanitary sewer system which discharges into the lake.
 - Lakeside does not have typical storm sewers with curbs and inlets.
 - Storm sewers are typically designed for a 10-year storm. Any flow over this results in overflow.

Unique Lakeside Drainage Design Challenges

- Lakeside presents unique stormwater runoff design challenges.
 - Very few curbed streets.
 - 100' of elevation change from SR 163 to the lake.
 - Limestone escarpment running from the southwest to the northeast that impacts topography and construction cost.
 - Rock is close to the ground surface.

SDA Design Considerations

- Looking to provide road-based drainage solutions for a 10-20-year design storm while keeping assessment funding reasonable.
 - Reviewing existing storm sewers and making repairs.
 - Adjusting street profiles to better direct runoff.
 - Using crowned or inversed crowned pavements.
 - Discharging water into shafts drilled in rock.
 - Retention basins designed for a 25-year storm.
 - Spot curb & catch basins, bio-swales, bio-retention, pervious pavers.
 - Meeting with property owners to review existing drainage issues and to offer suggestions.

Design Status Updates

- Survey work is underway from the face to face of houses.
- Existing utilities are being located.
- Property owner drainage comments are being reviewed by CDE.
- Directed CDE to include roadway drainage concerns more actively in their design.

Construction still targeted to begin fall 2024

Next Steps

- Continued SDA drainage discussions.
- Work with CDE to review and incorporate cost effective drainage improvements.
- Considering adding Oak or other similarly impacted streets to Phase 1.
 - Known long term past known drainage issues
 - Test various drainage control tools.
- Continued coordination with Lakeside staff to determine the scope of Phase 1 and drainage solutions.

End